
International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Control Flow Tracer - A method for quicker
understanding of code

Arul Siva Murugan Velayutham, Ramakrishna Rajanna, Mayank Gupta

Abstract— Understanding a huge and complex code base is a challenging task. New software engineers would struggle to find the
executed code for a particular feature. Locating the files/classes/methods related to a particular application feature can be daunting a task
until they are familiar with the code. This paper will be discussing a method to help understanding application code faster with minimal
effort.

Index Terms— Tracing Code Execution, Software Engineering, Debugging, Code Comprehension, Code Learning, Control Flow, Code
Bubbles.

——————————  ——————————

1 INTRODUCTION
racer is a tool whose main objective is to save the control
flow of the core component of code and present to the

user as a animated video play mode or listing for the easy
search mode with following are the objectives.
 Easy to use with any binary and users should have ability

to control when to trace.
 Must not change the normal execution behavior.
 Ability to trace every thread.
 Minimal performance impact when being traced and oth-

erwise no impact.
 Ability to filter packages/classes to be traced.
 Automatic elimination of repeated sets of traced records

occurring due to loops in the code.
 Traces generated once can be viewed multiple times with

good visualization for easy conceptualization.
This tool is aimed only at understanding the code easier and
not for debugging or using it as a profiler, though it is using
concepts from the profilers.

2 EXISTING TECHNIQUES
Why another tool and not debugger or log statements?
Debugger will be difficult to use at the initial stage of code
understanding, especially when there are many
implementations of the interface and dynamic bindings. It will
be difficult for new developers to narrow down the relevant
implementation. They may be struggling to put the break
point at appropriate places and needs to make the conscious
decision of step-in or step-out or step-return. This is a very
time consuming process. Thread based callbacks makes the
process trickier. These limitations force the developers to run

the debugger multiple times. Log/print statements also leave
the developers in similar state.

3 DESIGN OF CONTROL FLOW TRACER
To achieve the objectives we have built two components.

1. Control flow Tracer (or) Call Tracer
2. Code Visualizer.

The Control Flow Tracer is used to instrument the binary
and control the traces of the execution and the code
visualizer is used to view the trace after the execution of the
binary.
 The Control flow tracer is a Java agent with Trace control
server and Class Transformer.
The code visualizer comes with two approaches:
 Call-graph mode: Ability to play calls made during the

execution as animation and expand the call graph in
sequence

 List mode: List of the function calls in the order of
sequence. It can be easily search-able for the function.

Visualizer is an independent entity like code bubble [1] that can
be used for general code browsing and explained in later part
of the paper. This paper focuses on the Java binaries,
however the concept is very generic and can be extended for
other languages.

3.1 Java Agent
Java 1.5 introduced Java agents, which provide a way to in­
strument classes at load/run time. Control flow tracer (Fig.1)
is a Java agent to instrument the needed classes so that the
executed lines are tracked. Control flow tracer listens on con-
figurable port for trace commands. The path to Control flow
tracer agent must be passed as jvm_arg (­­javaagent) to the
application.

T

Arul Siva Murugan Velayutham was working at Google India, Banga-
lore. E-mail: arulsmv@gmail.com
Ramakrishna Rajanna is currently working at Google India, Banga-
lore. E-mail: ramakrishna.r@gmail.com
Mayank Gupta was an intern in Google India, Bangalore. Email:
m08genius@gmail.com

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3.2.1 Trace control server
Trace control server listens on the given port for start and stop
commands. It takes inclusion and exclusion filters for each
trace started.

On receiving start command, the server attaches the tracer
transformer to jvm and instructs to reload all the classes. The
transformer instruments classes to record the execute lines and
the reloads them. On receiving the stop command the server
detaches the transformer and reloads the original classes and
spans another thread for generating a report that can be used
for both graph mode and list mode visualizations.

3.2.2 Class Transformer
Class transformer is modified version of Emma[2] which is an
open source code coverage tool. Emma provides code
coverage logging and report generation. The functionalities of
Emma that were reused with some modifications include:
Block Detection: Block is a non­branching sequence of in­
structions. Data collection optimized by only logging at block
level. Emma does not treat a function call as a branching
instruction but it is modified here to treat function call as end
of block just like other branching instructions.
Class Meta­data generation: At the time of tracing Class­id,

method­id and block­id are stored in a trace file.
Corresponding mappings of class­id to class­name, method­id
to method­name and block­id to line numbers are stored in a
meta­data file.
Filter: Transformer should not transform all the classes. It
should only transform classes which pass the inclusion and
exclusion package filters. Protocol Buffers[3] are automatically
detected by looking at interface implementations. Similarly
other generat­ ed files like gxps can be auto detected.
Instrumentation: Emma is used to interpret the raw “.class“
files and instrument the application classes to log execution se­
quence. At the end of each basic block, the following five lines
of op­codes are added for tracing the basic blocks that are
executed.

load class­id�
load method­id�
load block­id�
load opcode
�getstaticrefIndexToStaticMethod�

The values of variables class­id, method­id and block­id are
calculated during the static analysis and hence they are
essentially integer constants being loaded at time of
instrumentation. A constant pool entry, referring to the static

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

method “printClassIDMethodIDBlockID()” is made and it’s
reference index is loaded.
Report generation: Emma is modified to generate the report
by reading the class meta­data and trace data.

4 TRACE DATA COLLECTION DESIGN
As mentioned earlier, the user’s application binary will be
invoked with additional jvm_arg along with all the arguments
needed for the binary. jvm_arg will point to the Java agent
with filters and port parameters. Once the tracing is enabled,
trace records are collected and stored for each basic block.

4.1. Trace Records
Each of the traces will have the one byte thread­id, four bytes
class­id, four bytes method­id, four bytes block­id, and the one
byte for type of the opcode that identifies the block.

4.2. Trace Collection
The tracer has a static method “printClassIDMethodIDBlock­
ID()” which is called with class­id, method­id, block­id and
opcode representing the basic block at every basic block level
indicating that this block is the one being executed stored in
an in­memory data buffer. At this point thread id is also
recorded. Thread names lead to better comprehension than
thread ids. However collecting thread name at every block
downgrades performance. Instead Java’s thread­locals were
used to populate the thread id­thread name mapping in a
Thread­local variable's init method. And a “tim” file with
thread Id Mapping is generated for the future references. This
ensures there is negligible performance hit in thread name col­
lection during thread context switch.

4.3. Dumping Thread
The “trace data” is periodically dumped in a separate thread.
This model was chosen as we did not want the application to
be blocked while data is written to disk/ sent over network.

 Efficiency is achieved by extending producer con­
sumer problem[4]. Simple technique of maintaining
two buffers (each of size 32M) is used. When “trace
data collection” is enabled, the data is collected in one
of the buffers. As soon as the buffer is full, the two
buffers are swapped. Also, the dumping thread is no­
tified with the first buffer to dump the collected data.
Dumping 32MB data to file takes approximately 25
milliseconds. The buffer sizes can be configurable to
suit different applications.

 The collected data consists of thread­id (1 byte), class­
id (4 bytes), method­id (4 bytes) and block­id (4 bytes)

and opcode (1 byte). This data is collected for every
basic block (when “trace data collection” is enabled).
The data is dumped in binary format (faster) in
“trace.etr” file. The requisite mapping of the IDs to
the names is dumped as meta­data in “trace.em” file.

 When “trace data collection” is disabled, the dumping
thread finally dumps of the data of the active buffer.

5 SCALABILITY
Data generated is huge when all the application classes are
traced. We use several techniques to reduce this size.

1. Inclusion and Exclusion filters: Users can provide the
packages they are interested in the form of inclusion
and exclusion filters. This greatly limits the classes
instrumented and therefore reduces the data size and
improves performance.

2. Automatic generated file detection: Generated files
might have some unique fields which can be looked
for in the .class files to detect and remove them from
instrumentation.

3. Loop Sequence: Loops are the biggest contributor to
the trace data. The algorithm is explained in the fol­
lowing section.

6 REPORT GENERATION
Report can be generated from the traces that were collected
during the tracing. In order to reduce the number of trace
records, some optimization are done at the time of generating
report.

6.1 Loop Sequence removal
Most of the iterations have the same execution sequence
providing little value in understanding the code. Finding
unique paths will greatly reduce the data size and also im­
prove comprehension with concise data.
At the time of report generation, a “best effort” pattern[5]
matching algorithm is used to remove repeated sequences oc­
curring due to loops. Only unique paths in the iteration are
preserved.

6.2 Identification of Function Boundaries
In order to identify the call levels keeping track of the calls
and returns/throw is essential and is achieved by recording
the basic blocks opcode type with CALL, RETURN, THROW
and OTHER along with the thread­id and carefully moving
between call levels whenever call or return/throw is encoun­

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

tered. For example when CALL is encountered next set of the
trace records of the same thread are treated as new sequences
of the execution and when return/throw is encountered, it is
returning to the previous call sequence, at this time the loops
boundaries are identified and repeated sequence intervals are
marked.

6.3 Identification of Loop Boundaries
Loop sequences are identified from the traces by examining
them with some clues. If there were trace records from the
same call level but have the next block­id lesser than the
current trace record's block­id then it is a backward jump.
This determines the loop boundaries. For each of the
identified loop boundaries, the sequence of the block
executed at that call level are tracked. If it happens to be
already found sequence, then the corresponding interval in
the trace is marked as duplicate for removal.

6.4 Complications with Instrumentation filter
In the trace records from single thread, identifying the calls
that are made between instrumented code and non­instru­
mented code is very essential. There are three possible cases of
the calls that are made

 Instrumented code calls a function that is instru­
mented

 Instrumented code calls a function that is non­in­
strumented

 Non­Instrumented code calls a function that is in­
strumented �

Trace records about non­Instrumented code calling a function
that is also non­instrumented will not be recored. Identifying

the call levels for each of the case are handled by opcode of the
next trace record and block id of the next sequence.

 If a call opcode trace record is followed by the block
id that is zero and the class id and method Id are the
called then it is an instrumented method calling in­
strumented method. Next set of sequences are for
new call levels (i.e) invoked method/function.

 If a call opcode trace record is followed by non­zero
block­id and the class­id and method­id are the same
then it is an instrumented method calling non
instrumented method. Next set of sequences are
continuation of the current call level (ie) same
method.�

 If a return opcode trace record is followed by class­id
& method­id that matches to the previous call level
and the block­id value of the next is greater than that
of the previous call levels block­id it is a return from
an instrumented method to direct call of the method�

 If a return opcode trace record is followed by class­id
& method­id that does not match to the previous call
level but the block­id value is zero, then it is return
from instrumented method to a non­instrumented
method and a call to instrumented method is
considered as indirect calls.

6.5 Finalizing the trace reports

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The trace records that are outside the marked (by loop­se­
quence remover) intervals are considered for report genera­
tion. Then remapping the Class­id, Method­id & Block Id to
corresponding Java class method line numbers are done and
written to the report with opcode. Opcode is used for
animated graph mode to deduce the graph structure. And this
report can be used again for given version of the code depot
any time later.

7 VISUALIZER
Visualization is the key for understanding the complex code.
The call­graph mode visualizer is based on the code­bubble. It
will start animations as video by highlighting the execution
part and displaying the methods or functions as and when
required. Fig 2 Illustrates the visualization with simple
example code as time series during the call­graph mode. Even
though methods “bar” and “bar1” called and executed 100
times the visualizer will show only few of them that are need­
ed for the code understanding of particular feature.

Here in this example At first the method “fooBarBoo()” calls
method “foo” and was shown as time series 1 and 2. And
time series 3 shows, the control returned to “fooBarBoo”
highlighting the “for” loop execution and so on. At the end
of the time series 8th one shows all the functions that were
executed. This will help the engineer to look at all the methods
at a time than going back and searching for the meth­ ods for

understanding part of the complex code.

The visualizer is rich in the functionalities like zoom, re­play,
step­back etc. Also during the playing of the execution it can
be controlled and other parts of the graph can be expand­ ed
manually by clicking the methods.

8 PERFORMANCE ANALYSIS
In our experiment with Gmail Front­end server, we achieved
85% reduction (on an average) in data size. No performance
hit when tracing is disabled and 30­100% performance hit de­
pending on the inclusion and exclusion filters.

For “Send mail” feature we brought down the number of trace
records to less than 5000 trace records. Playing this code exe­
cution in graph mode visualization completed in 30 mins with
two seconds pause between function calls.

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 6
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

9 CONCLUSION
This technique helps in new team members to quickly find
and understand the relevant code in a few minutes. Unlike de­
buggers this is a faster technique to follow the execution se­
quence for any user action. Coupled with different visualiza­
tions this is a very productive tool for developers to quickly
start working on new large projects.

REFERENCES
[1] Code Bubbles: A Working Set­based Interface for Code Understand­ ing and

Maintenance. Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman
Karumuri, William Cheung, Joshua Kaplan, Christo­ pher Coleman, Ferdi
Adeputra, and Joseph J. LaViola Jr

[2] Emma http://emma.sourceforge.net/
[3] Protocol buffers: https://developers.google.com/protocol-

�buffers/docs/overview
[4] Implementation and Experimentation of ProducerConsumer

Syn­chronization Problem: Syed Nasir Mehmood, Nazleeni Haron and Vaqar
Akhtar, Younus Javed,
http://www.ijcaonline.org/volume14/number3/pxc3872398.pdf

[5] Detection of inter­spread repeat sequence in genomic DNA sequence.: Mu­
rakami H, Sugaya N, Sato M, Imaizumi A, Aburatani S, and Horimoto K.
http://www.ncbi.nlm.nih.gov/pubmed/15712120

